Brief Communications

Reactions of O-methyl tetramethyldiamidophosphite with halo- and thiocyanoalcohols

O. N. Nuretdinova, * F. F. Guseva, and V. G. Novikova

A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center of the Russian Academy of Sciences, 8 ul. Akad. Arbuzova, 420083 Kazan', Russian Federation.

Fax: +7 (843) 275 2253

The reaction of O-methyl tetramethyldiamidophosphite with 3-bromopropanol or 3-bromo-2-butanol occurs with the liberation of dimethylamine and results in mixed phosphites. The reaction of O-methyl tetramethyldiamidophosphite with 3-thiocyano-2-butanol proceeds with the participation of the sulfur atom of the thiocyano group and formation of S-(3-hydroxybutyl) tetramethyldiamidothiophosphate.

Key words: O-methyl tetramethyldiamidophosphite, 3-bromo-2-butanol, 3-bromo-2-butanol, 3-thiocyano-2-butanol.

Previously, it has been shown that the reaction of O-methyl tetramethyldiamidophosphite (1) with 3-bromo-2-butanol (2) in the presence of Et₃N results in phosphite 3, which undergoes cyclization in ether at room temperature to give¹ 5-methyl-2-dimethylamino-1,2-oxaphospholane-2-oxide (4) (Scheme 1).

The reaction of compound 1 with 3-thiocyano-2-butanol (5) affords² 6-methyl-2-dimethylamino-1,3,2-oxathiaphosphorinane-2-oxide (6) (Scheme 2).

Scheme 1

Scheme 3 $(Me_{2}N)_{2}POMe + HOCHCH_{2}CH_{2}Br \xrightarrow{-Me_{2}NH}$ 7 R 2, 8 $MeO \longrightarrow POCHCH_{2}CH_{2}NMe_{2}Br \longrightarrow R$ 9, 10 $HCI, \longrightarrow HCI, \longrightarrow HCI \longrightarrow HCI$ $ether \longrightarrow (for 10) \longrightarrow HCI, \longrightarrow HCI$ $ether \longrightarrow (for 10) \longrightarrow HCI, \longrightarrow HCI$ $ether \longrightarrow HCI, \longrightarrow HCI \longrightarrow HCI$ $ether \longrightarrow (for 10) \longrightarrow HCI, \longrightarrow HCI$ $ether \longrightarrow (for 10) \longrightarrow HCI, \longrightarrow HCI$ $ether \longrightarrow HCI$ ether

The reaction of O-methyl tetramethyldiamidophosphite (7) with bromoalkanols can proceed via replacement of the methoxy or dimethylamino group at the P atom. It was found that the action of compound 2 on 7 results in the abstraction of dimethylamine followed by cyclization of the phosphite formed (Scheme 3). When the starting compounds are heated in benzene at 60 °C, a white bulky precipitate is formed (the ^{31}P NMR spectrum of a sample of the reaction mixture displays one signal at δP +146). If the benzene is evaporated *in vacuo*, the pasty white precipitate decomposes with self-heating. We assume that an ammonium salt (9) is formed, whose transformation to compound 4 requires a higher temperature (heating in boiling C_6H_6).

8, 10, 13: R = H

2. 9. 4: R = Me

The reaction of phosphite 7 with 3-bromopropanol (8) in benzene results in salt 10 at the first stage. This salt is more stable to heating in benzene than compound 9 and is transformed on boiling in C_6H_6 to cyclization product 13 in a minor yield. Therefore, it is more expedient to perform the reaction of compounds 7 and 8 in ether with subsequent treatment of salt 10 with an ethereal solution of HCl. Boiling in toluene results in the transformation of the phosphite 11 formed to the respective phosphate (12), which undergoes cyclization under these conditions to give compound 13.

Haloalcohols react with phosphite 7 without changes in the phosphorus coordination, but thiocyanoalcohols react with compound 7 by the Arbuzov reaction scheme. The reaction starting from compounds 5 or 7 affords

S-(3-hydroxybutyl)tetramethyldiamidothiophosphate (14), which withstands distillation *in vacuo*. The IR spectrum of compound 14 confirms the presence of an OH group (a band at 3390 cm⁻¹). The reaction of thiophosphate 14 with PCl₅ gave acid chloride 15.

Experimental

Reaction of O-methyl tetramethyldiamidophosphite (7) with 3-bromo-2-butanol (2). Compound 2 (10.52 g) was slowly added with stirring to phosphite 7 (10.31 g) in C_6H_6 (20 mL). A white precipitate of salt 9 formed. The stirred reaction mixture was heated to boiling, refluxed for 15–20 min, and cooled. The precipitate was filtered off, and the residue was distilled to give 4 g of 5-methyl-2-dimethylamino-1,2-oxaphospholane-2-oxide (4), b.p. 85–90 °C (0.15 Torr), d_4^{20} 1.1468; n_D^{20} 1.4672. ³¹P NMR, δ : + 49. Cf. Ref. 1: d_4^{20} 1.1486; n_D^{20} 1.4607. The IR spectrum of compound 4 is identical to that of a sample obtained previously. ¹

Reaction of phosphite 7 with 3-bromopropanol (8). Compound 8 (6 g) was added with stirring to phosphite 7 (6.47 g) in ether (30 mL), and a white precipitate of salt 10 formed immediately. HCl (1.5 g) in ether (20 mL) was added with stirring and cooling (ice-water) to the reaction mixture, and the amount of the precipitate increased. The ^{31}P NMR spectrum of a sample of the reaction mixture predominantly displays a signal of phosphite 11 at δ 146. The ether was evaporated in vacuo without heating, then C_6H_6 (10 mL) was added, and the mixture was refluxed for 45 min. The ^{31}P NMR spectrum of the reaction mixture displayed two signals at δ 50 and 36. Distillation gave a fraction (3.2 g) with b.p. 60–98 °C (0.07 Torr) whose spectrum contained the same signals. This fraction was refluxed with toluene (^{31}P NMR monitoring) to give 2-dimethylamino-1,2-oxaphospholane-2-oxide 13: b.p. 74–79 °C (0.1 Torr), d_4^{20} 1.1725; n_D^{20} 1.4732. ^{31}P NMR, δ : + 49. Cf. Ref. 1: d_4^{20} 1.1718; n_D^{20} 1.4718.

Reaction of phosphite 7 with 3-thiocyano-2-butanol (5). Compound 5 (3.18 g) was added with stirring to phosphite 7 (3.64 g) in C_6H_6 (20 mL); this was accompanied by self-heating of the reaction mixture. Evaporation of C_6H_6 in vacuo left 2.57 g (44 %) of S-(3-hydroxybutyl)tetramethyldiamino-thiophosphate (14), b.p. 120–122 °C (0.1 Torr), d_4^{20} 1.1184; n_6^{20} 1.5035. Found (%): C, 39.84; H, 8.98; N, 11.70; P, 12.07. $C_8H_{21}N_2O_2PS$. Calculated (%): C, 40.00; H, 8.75; N, 11.67; P, 12.92. ^{31}P NMR, δ : +42.

Reaction of thiophosphate 14 with PCl₅. PCl₅ (3.97 g) was cautiously added to a solution of thiophosphate 14 in CHCl₃ (20 mL). The mixture was refluxed for 30 min. The volatile compounds were distilled off *in vacuo* (10 Torr) at 70 °C. CHCl₃ was added to the residue, and the solution was passed through a porous funnel with SiO₂ to remove resinous admixtures. The solvent was evaporated *in vacuo*, and the residue was distilled to give acid chloride 15, b.p. 98–110 °C (0.1 Torr), d_4^{20} 1.2261; n_D^{20} 1.5080. Found (%): C, 28.56; H, 5.40; P, 12.09. C₆H₁₄Cl₂NOPS. Calculated (%): C, 28.80; H, 5.60; P, 12.40. ³¹P NMR, δ : +38.

References

- O. N. Nuretdinova and F. F. Guseva, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1988, 2416 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1988, 37, 2178 (Engl. Transl.)].
- O. N. Nuretdinova, V. G. Novikova, and L. B. Troitskaya, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2673 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 2119 (Engl. Transl.)].

Received March 4, 1992; in revised form July 19, 1993

Synthesis of 1-morpholino-1-(phenylethynyl)cycloalkanes from enamines and phenylacetylene in the presence of Cu(1) halides

L. Yu. Ukhin, * V. N. Komissarov, and Zh. I. Orlova

Institute of Physical and Organic Chemistry, Rostov State University, 194/3 prosp. Stachki, 344771 Rostov-on-Don, Russian Federation. Fax: +7 (863) 228 5667

1-Morpholino-1-(phenylethynyl)cyclopentane and 1-morpholino-1-(phenylethynyl)cyclohexane were obtained by reactions of enamines, derivatives of cyclic ketones, with phenylacetylene in the presence of CuI. A scheme for catalysis by Cu(I) compounds with the intermediate formation of copper phenylacetylide and iminium salts was suggested.

Key wor ds: 1-amino-1-(phenylethynyl)cycloalkanes; enamines; phenylacetylene, copper(1) halides; copper acetylides; Mannich reaction; iminium salts.

The addition of nonactivated terminal acetylenes to the double bond of enamines, derivatives of butyric and isobutyric aldehydes, catalyzed by Cu(I) compounds has been described previously.¹

We have found that enamines 1a,b, the derivatives of cyclic ketones, also readily react with phenylacetylene on heating in acetonitrile in the presence of stoichiometric or catalytic amounts of CuI to give 1-morpholino-1-(phenylethynyl)cycloalkanes 2a,b (Scheme 1).

It was shown by chromatography that compounds 2 are also formed if CuCl or CuBr are used. In Ref. 1, only the catalytic action of Cu(1) compounds was stated.

It is noted in a review² devoted to the Mannich reaction (which can also occur *via* enamines as intermediate compounds) that Cu(1) salts increase the nucleophilicity of acetylene substrates toward Mannich rea-

Scheme 1

$$\begin{array}{c|c} (CH_2)_n & CH_2 & CH_3 & CH_$$